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Transfusion Overview in Perioperative/Emergent Field
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-A Potential of Hemoglobin Vesicles-
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Abstract

Despite the remarkable medical advances were made over recent years, erythrocyte transfusions are often still required
during emergency care and the perioperative period. Several recent reports on blood transfusion have prompted the Japanese
Red Cross Society to publish revised guidelines for implementing transfusion therapy. In order to perform this procedures, one
must understand both the compensatory mechanism that occurs during acute anemia and the potential adverse reactions to
transfusion. Although great efforts have been made to ensure the safety of blood transfusions, some fundamental issues have
yet to be resolved. Consequently, several artificial oxygen carriers have been developed; however, in terms of their safety and
effectiveness, only those that utilize hemoglobin have shown potential at the pre-clinical stage in Japan. We are privileged to
have had the opportunity to study the safety and effectiveness of hemoglobin vesicles, which appear to have the greatest
potential for clinical application. The present paper reviews tolerance to anemia under anesthesia and during trauma treatment,
post-transfusion prognosis, and the potential application of hemoglobin-based oxygen carriers, with reference to the results of
our own survey of these topics.

Keywords
Hemoglobin-based oxygen carrier, multiple organ failure, hemorrhagic shock, transfusion, red blood cell, fluid resuscitation
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Fig. 1. The oxygen equilibrium curves for alrabbit Hb and bCHbV.

Table 1. Hemodynamic variables in New Zealand white rabbits after inducing hemorrhagic shockl HSOby withdrawing blood and
stabilization for 30 min. Animals were resuscitated using the same volume of HbVV/rHSA, rHSA or RL, or using 30RL, ove
15 mirid RESO The hemodynamic variables were measured again after 15 min, 1 h and 2 h. *Significant difference from
baseliné] p<0.05C] T Significant difference from the RL group] p<0.05C] All values are presented as the mean + SDJn = 6]

Baselinel HS 30 min RES 15min | 1lh \ 2h
Mean arterial pressur&l mmHgT]
HbV/FHSAO 85+ 100 33+ 10 43+ 3F*J 88% 10t O 90+ 16t 0 90+ 17t 0 90+ 7t O
rHSAD 89+ 110 32+ 30 36+ 2¥0 68+ 140 76+ 9t 0 77+ 9t0 80% 9t O
RLO 78+ 100 34+ 10 41+ 9*0 69+ 90 56+ 13*0 51+ 10*0 54 + 20*0
3XRLO 80+ 17 31+ 3* 38+ 7* 67+ 12 62+ 17 48 + 20* 46+ 16*
Central venous pressurél mmHg]
HbV/THSAO 4.5+ 1.20 3.0+ 090 28=% 1.5*0 5.8+ 1.50 58+ 150 42+ 120 47+ 1.20
rHSAUO 52+ 1.70 3.2+ 1.2*0 3.0%x 1.3*0 5.0+ 1.70 48+ 150 4.7+ 050 4.2+ 0.80
RLO 6.2+ 1.30 27+ 080 28% 040 4.7+ 140 40 1.7/0 38% 080 35z 1.0)0
3XRL 43+ 10 28+ 1.0 28+ 1.2* 55+ 0.8 48+ 1.2 3.7+ 05 28+ 1.0
Cardiac Index] [Ominute™*0m™2[J
HbV/FHSAO 2.9* 0.70 12+ 040 29+ 02t 0 3.2+ 08t 0 28+ 04t O
rHSAD 2.7+ 0.80 1.0+ 0.2)0 27+ 070 23+ 05t 0 24+ 0.6t 0O
RLO 26+ 0.90 1.1+ 0.4*0 1.8+ 0.40 1.3+ 030 1.1+ 0.3*1
3XRL 29+ 05 1.1+ 0.2* 26+ 09 19+ 0.6 1.4+ 0.4*
Systemic vascular resistancé] dynelJsecondlcm-5[1]
HbV/rHSAO 1579 + 7380 1839+ 4200 1516 + 2940 1498 + 4400 1516 + 2940
rHSAO 1834+ 4940 1956 + 3940 1600 + 5690 1820+ 5490 1600+ 5690
RLO 1559 + 5640 2012 + 6950 1578 + 5090 1993 + 5870 1578 + 5090
3XRL 1575+ 465 1868 + 370 1374+ 334 1420+ 717 1374+ 334
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Newer Concepts of Oxygen Transport and Regulation:
Relation to Vascular Physiology
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Introduction

Oxygen transport and blood flow regulation are linked by a
variety of mechanisms but the linkage is complex and based
on the interactions of a number of seemingly unrelated
factors. The purpose of this presentation is to provide an
overview of this area. As will become apparent in this
presentation, the arteriole, which is the primary regulator of
blood flow, is acted upon by a variety of stimuli that
determine its degree of contraction and relaxation under
different conditions.

Chemosensitive Mediation of Blood Flow
The metabolic hypothesis

The simplest relationship between the rate of blood flow
and the rate of oxygen transport, is the metabolic
hypothesis*™as shown in Figure 1. This is based on the
concept that arterioles possess chemosensitive properties.

O\ 5
VASODILATOR METABOLITE

s~ N
7\ < 4
N \~—”,/’/\_
. = VENULES

ARTERIOLES
CAPILLARIES

METABOLIC HYPOTHESIS

Fig. 1. Schematic diagram of a model of metabolic regulation of blood
flow. Details are presented in the text. Fronil 10by permission.

According to this hypothesis the tissues are constantly
producing metabolites that cause vasodilation of the
arterioles. If oxygen delivery is adequate, a vasodilator
product of aerobic metabolism, CO,, will be produced as a
function of the rate of aerobic metabolism. In turn, as
carbonic acid is formed there will be an increase in H*, which
also has potent vasodilator effects/ In this case the rate of
blood flow will be determined by the concentration of CO,
acting on the arterioles. That concentration will be directly
dependent on the ratio of oxygen consumption to blood flow.
The attractive feature of this hypothesis is its simplicity and
its ability to provide a direct linkage between the rate of
oxidative metabolism and blood flow. And in fact, certain
vascular beds such as myocardium®and brain*are sensitive
to CO, and this hypothesis is a plausible possibility to explain,
at least in part, blood flow regulation in those organs.
However, in other vascular beds such as skeletal muscle
there is a also direct relationship between blood flow and
oxygen consumption but detailed studies have failed to reveal
a significant role for CO, in flow regulation*! These findings
have led researchers to examine other possible mediators
which might be produced when the oxygen levels are
sufficient overall but in localized areas are insufficient, leading
to a shift to anaerobic metabolism in the parenchymal cells.
According to this hypothesis it is proposed that under
normal conditions when oxygen levels are sufficient for most
regions of the tissue there are certain tissue areas in which
the oxygen supply is inadequate® causing these areas to rely
on mediators such as adenosine and H* produced by
anaerobic metabolism. Secondarily, depolarization of the
parenchymal cells will cause release of K* from these cellsd A
small increase in extracellular K* has been shown to increase
K* conductance of the plasma membrane, leading to
hyperpolarization and relaxation of vascular smooth muscle.r
A logical location for a tissue area of anaerobic metabolism is
the venous end of the capillary network where the oxygen
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concentration in the blood flowing through the capillary
network reaches its lowest level. In addition, it is well known
that flow rate of blood through the microcirculatory vessels
and hematocrit in these vessels are both highly variable,
lending credence to the possibility that such areas might
normally be present. If they are present, the release of
vasodilator products of anaerobic metabolism would provide a
feedback system in which these vasodilator agents would
diffuse to nearby arterioles and adjust the state of contraction
of the vascular smooth muscle according to the degree of
anaerobiosis present.

This hypothesis has been tested in our laboratory by
monitoring the level of NADH fluorescence in microregions of
the tissues 15 to 25 p m diameter in the vicinity of the
capillary network of skeletal muscle as blood flow is reduced
or stopped completely for a period of time. A rise in NADH
level is taken as an indication of a shift from aerobic to
anaerobic metabolism. We found that with complete occlusion
of blood flow there was no change in NADH level for an
average of 45 s and there was no difference in this latent
period between the arteriolar and venous ends of the
capillary network®! In these studies NADH increases at the
earliest in 10 to 15 s after occlusion. When, instead of
complete stoppage, blood flow was reduced by 50%, a
minimum of 30 s passed before a detectable increase in
NADH occurred™. Both of these findings suggest that under
normal conditions there are no microregions of the tissue in
the vicinity of the capillaries that are hypoxic or on the verge
of hypoxia.

While these findings do not support the concept that the
metabolic state of the parenchyma contributes to blood flow
regulation under resting conditions, there is evidence that it
is important when oxygen levels become inadequate. We
have found that the magnitude of reactive hyperemidl the
period of increased flow following a period of blood flow
stoppagelis related to the duration of stoppagél unpublished
findingsll Interestingly, as the period of stoppage is increased
from 5 s to 45 s, the amplitude of the reactive hyperemia
following restoration of flow increases up to 4 times the
control flow but the duration remains relatively constant at
about 70s. However, when the flow stoppage exceeds 45 s
NADH fluorescence of the tissue begins to increase and the
duration of hyperemia increases as a function of the period of
stoppage. This finding provides clear evidence that a shift to
anaerobic metabolism in skeletal muscle can produce
vasodilator metabolites, possibly including H", lactate and
adenosine, and increase the duration of reactive hyperemia.
Whatever the specific mediators may be, it appears that they
remain in the tissues until they are reincorporated into the
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energy supply or washed out by the blood stream. We have
some evidence in these studies that washout is more
important than reincorporation.

Oxygen-dependent mediators at the arteriolar level

To this point we have focused on factors that may produce
vasodilation in relation to the metabolic requirements of the
parenchymal cells in the tissue. There are, however, a
variety of oxygen-dependent mechanisms at the level of the
arterioles that may play key roles in blood flow regulation.
These mechanisms adjust the contractile state of the smooth
muscle in accordance with the local PO.,.

Microcirculatory studies have revealed that elevation of the
oxygen level in suffusing fluid over a surgically exposed
tissue reduces blood flow due to constriction of the
arterioles™. Several mechanisms may be involved as recently
reviewed by us™ It appears that this response may be due to
in part to release of a vasoconstrictor cytochrome P450
metabolite of arachidonic acid, 20-HETE, from the arteriole
when arteriolar PO, is elevated. There is also evidence that
release of vasodilator prostaglandins from the endothelium
increases when PO, is reduced. Additionally, it has been
shown that nitric oxide release from the endothelium
increases when oxygen falls below normal levels. Finally, it
appears that the endothelium also releases the vasodilator
adenosine during hypoxia.

An additional mechanism that may be important is based
on the finding that deoxygenation of the red cell may cause
relaxation of the arterioles due to release of ATP which acts
on purinergic receptors. It has been proposed also that as
the red cell is deoxygenated in passage through the capillary
bed ATP is released and acts on the venular endothelium to
release vasodilator prostaglandins which would in turn
diffuse to nearby arterioles™ This would provide a feedback
arrangement in which greater oxygen extraction from the
blood at the capillary level would automatically lead to
arteriolar vasodilation and return of blood flow toward
normal levels. The overall effect of the oxygen-dependent
chemical mediators elicited at various levels as described
above is summarized in Figure 2. In this figure the roles of
the red cell, endothelium and the parenchymal cells and
specific mediators in flow regulation are shown.

Mechanosensitive mechanisms

In addition to the chemosensitive mechanisms described
above there is a separate class of important,
mechanosensitive mechanisms that respond to physical
stimuli. These are the myogenic response which is due to
circumferential tension in the vascular smooth muscle
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Fig. 2. Overview of chemosensitive factors that influence blood flow,
Detail are presented in the text.

created by the intravascular pressure and the flow-induced
vasodilation due to the wall shear stress exerted by the
flowing blood on the endothelium.

The myogenic response
The myogenic response acts in such as way as to tend to
maintain a constant circumferential tension in the arterioles

despite a change in intravascular pressure'’ A model
description of this mechanism is shown in Figure 3"
Conceptually this mechanism considers the vascular smooth
muscle cell to consist of a contractile element in series with a
passively distensible sensor element. It is proposed that as
the sensor element is stretched it causes depolarization of the
smooth muscle cell and excitation of the contractile element.
The length of the sensor element and its degree of
deformation is dependent upon the circumferential tension
0 TO Tension is in turn dependent on both the intravascular
pressuré] P(Jand the vessel radiug] R[] according to the Law
of Laplace T = POR. Consider now how the arteriole
responds when pressure is elevated. As shown in Figure 3,
an increase in pressure leads to an increase in vessel radius
and deformation of the hypothetical sensor, which in turn
causes shortening of the contractile machinery. Note that
when the vessel radius returns to its initial level, the wall
tension and sensor length are still elevated due to the
increased pressure. This causes the smooth muscle cell to
shorten further until an equilibrium point is reached at which
the sensor is still somewhat deformed at an elevated pressure
and as a consequence, the contractile element remains in a
shortened state. While the final details are not clear, there is
evidence that integrins, which connect the smooth muscle cell
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to its surroundings, may act as tension sensors to mediate the
myogenic response, in part by causing depolarization in the
fashion described above.

MYOGENIC MODEL

CONTRACTILE
ELEMENT

SENSOR

SENSOR LENGTH
ELEMENT (Ls)

WALL
TENSION

m

RADIUS
T=P-r (R)

Ls=KT)

PRESSURE

(P) 1

Fig. 3. Schematic diagram of a model of myogenic regulation of
arteriolar diameter. Details are presented in the text. FromO 1200
by permission.

The myogenic response is found in virtually all the
arterioles in different organs and is one of the primary
mechanisms that provides a basal level of vascular tone, that
is a partial contraction of the arterioles. Of course the
constant discharge of the sympathetic nervous system fibers
acting on the arteries and arterioles also is important in
providing a continuous state of partial contraction of the
smooth muscle®™. The functional importance of the myogenic
response relates to the property shown in Figure 3, namely
that it causes vascular tone to be inversely related to
intravascular pressure. Experimental studies have shown
that this mechanism tends to maintain capillary hydrostatic
pressure constant as arterial pressure changes. It also tends
to maintain blood flow to an organ constant as arterial
pressure changes] autoregulation of blood flow(l

Flow-induced dilation

The second mechanosensitive mechanism, flow-induced
dilation, is a consequence of the wall shear stress dependent
release of nitric oxiddl NOOor, in certain vascular beds,
prostaglandins, causing vasodilation*”, This mechanism has
been extensively studied and described elsewhere and will
not be considered in detail here. Flow-induced dilation is

found throughout the arterial and arteriolar networks. It is
functionally important in a number of circumstances. For
example, at the onset of muscular exercise the release of
vasodilator metabolites from parenchymal cells causes
relaxation of the arterioles in the muscle and increases flow
through the arteries upstream that are outside the muscle
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and thus not exposed to the vasodilator metabolites. The
increased flow in these arteries increases wall shear stress on
the endothelium that then leads to NO or prostaglandin
release and dilation.

Influence of the Rheological Properties of Blood

The chemosensitive and mechanosensitive mechanisms
regulating blood flow are influenced by the physical
properties of the blood, most importantly the viscosity at the
interface between the flow stream and the endothelium since
shear stress in the flow stream is maximal at this interface.
As blood travels through the vessels the red cells tend to
migrate toward the center of the vessel, leaving a cell-free
layer near the vessel wall*". The cell-free layer will influence
the resistance to blood flow directly through its viscosity and
also indirectly by influencing the geometric component of the
flow resistance through the flow-induced dilation mechanism
described above. We have found that the width of the layer
increases from about 1 y m in arterioles of 10 p m id. to
about 3 p min 50 y m i.d. vessel$] unpublished findings[]

As mean width of the cell-free layer increases, the flow
resistance would be reduced since viscosity in the cell-free
layer is lower than in erythrocyte core. On the other hand,
the irregular surface of the interface between the cell-free
layer and erythrocyte core has been shown theoretically to
increase the flow resistance'’ Secondly, it has been shown in
theoretical studies that an increase of the cell-free layer width
would reduce NO scavenging by the red cell core'” leading
to a higher concentration of NO in the vicinity of the vascular
smooth muscle, which would cause vasodilation. This
observation suggests that the width and form of the cell-free
layer near the vascular wall plays a significant role in blood
flow regulation.

Effects of Blood Substitutes on Flow Regulation

The contribution of the cell-free layer to flow regulation
may have significant implications for blood substitutes which
generally consist of a solution containing hemoglobin in some
form that increase the volume of the cell-free layer relative to
the red cell component and reduce hematocrit. Since the
width of the cell-free layer is inversely related to hematocrit,
the increased width would reduce the scavenging of NO by
the red cells. However, this effect may be partially offset by
increased scavenging of NO if the blood substitute is
hemoglobin-based.

At the systems level it is well known that reducing the
oxygen level in the blood by reducing the PO, of the inspired
gas has profound effects on the cardiovascular system,

causing a reduction in arterial pressure and blood flow,"*
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These changes accentuate the local effects of the hypoxemia
itself. It seems likely that blood substitutes would also
introduce systemic as well as local effects.

From the considerations presented above, it is evident that
the physiological effects of blood substitutes go well beyond
those due to simply restoring the oxygen carrying capability.
As a consequence, in designing a blood substitute its effects
on the local regulatory mechanisms and the stimuli to which
they are sensitive must be carefully considered.

Summary

In summary, blood flow to individual organs is determined
largely by local regulatory mechanisms that respond to a
variety of influences at the level of individual arterioles.
These mechanisms fall generally into two main categories,
chemosensitive and mechanosensitive. Chemosensitive
mechanisms respond to changes in the environment of the
arteriole and of the parenchymal cells as determined by
oxygen levels in these regions. Mechanosensitive mechanisms
respond to wall shear stress produced by the cell-free layer
of the flow stream acting on the endothelium and
circumferential stress acting on the vascular smooth muscle.
Blood flow through each arteriole is determined by the
summated effect of the stimuli presented to the arteriole by
these operative mechanisms. In turn the organ flow
represents the net effect of these independent processes
occurring in individual arterioles.

Cardiac output then represents the summation of literally
millions of the individual processes within each organ. In
other words, cardiac output in the steady state situation is
determined by the demand of the individual organs and not
by the command of central mechanisms. When blood
substitutes are introduced into the circulation local control
mechanisms are significantly affected through changes in
oxygen delivery, intravascular pressure, blood viscosity, wall
shear stress and NO scavenging by the blood substitute and
the red blood cells. A better understanding of the effects of
blood substitutes on the chemo- and mechanosensitive factors
that control blood flow through their effects on the arteriole
may aid in developing more effective blood replacements.
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Review

Polyethylene Glycol Conjugated Albumin:
A New Generation Plasma Expander

Nanae Hangai-Hoger and Marcos Intaglietta

Abstract

Polyethylene glycol conjugated albumiri] PEG-Albin either normal saline or Ringer's lactate at concentrations in the ranging
from 25 to 4.0 g/dl is a non-immunologic, non-antigenic plasma expander that has a long intravascular permanence and
maintains central blood pressure, blood flow, and functional capillary density in extreme hemodilution, hemorrhagic shock and
endotoxemia. It has longer lasting effectd] half life of the order of 24 hoursOand is more efficacious than colloids such as starch,
albumin and dextrans and has the specific of restoring and improving microvascular function. These properties suggest that its
use in critical illness and resuscitation can delay the use of blood transfusions, thus extending the transfusion trigger to lower

hemoglobin levels.

Keywords PEG-Albumin, plasma expanders, shock, extreme hemodilution, endotoxemia, functional capillary density

INTRODUCTION

The need for an optimal plasma expander is as essential as
that for a blood substitute. Factors that define an optimal
plasma expander are the ability to sustain volume expansion
for a prolonged period, maintenance of central blood pressure,
lack of red blood celd RBCOaggregation, effectiveness at low
concentration and maintenance of tissue perfusion. How to
achieve these properties has been a subject of controversy
particularly regarding the viscosity, colloid osmotic pressure
0 COPOand type of material needed to obtain properties that
insure adequate organ perfusion. Maintenance of tissue
perfusion is probably the most important parameter in
classifying the effectiveness of a plasma expander. Tissue
blood flow is determined by perfusion pressure, vascular
resistance and blood viscosity, factors that in rigid tubes are
related by Poiseuille’'s equation. However, the introduction of
plasma expander may lead to in vivo changes in oncotic and
osmotic pressure and blood viscosity that interact with
regulatory processes of peripheral vascular resistance arising
from changes in the production of vasoactive mediators by
the endothelium and their transport in the circulation.

Introduction of a plasma expander invariably reduces
hematocrit] Hct[] and unless its fluid viscosity is similar to
that of blood it reduces blood viscosity. The reduction of

blood viscosity] hemodilutionCdhas been regarded as beneficial
since antiquity. Currently the limit of hemodilution is the
condition when perfusion and oxygen delivery are no longer
able to maintain tissue metabolism, a point termed the
transfusion trigger, where restoration of blood oxygen
carrying capacity is considered necessary. Studies by Tsai et
al. show that as blood viscosity is reduced by hemodilution,
microvascular function is progressively impaired,
jeopardizing tissue survival due to the local microscopic
maldistribution of blood flow'. These effects take place at
Hcts that are greater than those defining the oxygen supply
limitation, a finding that leads to the hypothesis that the limit
of hemodilution could be significantly decreased if the process
of plasma expansion maintains microvascular function.

Recent studies show that microvascular function can be
maintained in extreme hemodilution by increasing either
blood or plasma viscosity**. Restoration of blood viscosity
during hemodilution and hemorrhage is desirable, because it
maintains functional capillary density] FCDL] defined as the
number of capillaries with passage of RBCs per unit surface
of the field of view of a microscopically observed tissue. This
microvascular parameter was found to be critical in defining
tissue survival by Kerger et al.*, who showed the direct
correlation between maintenance of FCD above a specific

Department of Bioengineering University of California, San Diego 9500 Gilman Dr. Mail code 0412 La Jolla, CA 92093-0412

0000 20060 0023000000 20060120110

84

0000 Vol 14, No.3, 2006



threshold and survival in extended hemorrhagic shock*: FCD
is also determined by the maintenance of capillary pressure,
which in extreme hemodilution is obtained by using high
viscosity plasma expanders*”

The blood viscosity threshold that causes the decrease in
FCD appears to coincide with the decision of transfusing
blood. Therefore, the transfusion trigger may also be a
"viscosity" trigger, and some of the results obtained with a
blood transfusion may also be achieved by increasing plasma
viscosity. Thus use of RBCs for the purpose of increasing
blood viscosity is unnecessary if a material is introduced that
increases plasma viscosity in the circulation. In this context it
would seem that a desirable property for plasma expanders
is that of increasing blood viscosity.

The viscosity of plasma expanders

The viscosity of plasma expander is determined principally
by the size of the colloidal component and its concentration.
Historical non-crystalloid plasma expanders were formulated
to limit their viscosities. Gelatin, dextran and starch solutions
were formulated in concentrations leading to viscosities in the
range of 2 cp, prior to administration. The inherent dilution of
the material upon their introduction into the circulation
determine that final plasma viscosity was not very different
from normal, i.e, about 1.0 to 1.2 cp. The viscosity of a
colloidal solution is determined by both the number of
particles per unit volume, and the molecular volume of the
solute. Therefore augmenting concentration is not a
mechanism for increasing viscosity of plasma expanders since
this increases COP, bringing interstitial fluid into the
circulation, diluting the material thus lowering viscosity, a
self-limiting process.

A different approach for increasing solution viscosity is to
increase molecular dimensions. Several molecular species
have been proposed and tested as a basis for plasma
expanders, including poly-vinyl pirrolidonédd PVPQO high
molecular weight dextrans and starches, keratins, alginates
and polyethylene glycol conjugated albumiril PEG-AlbL]

With few exceptions high molecular weight material such
as PVP, starches, dextrans and keratins tend to cause RBC
aggregation when Hct is near normal. Alginates and PEG-Alb
do not cause RBC aggregation and have similar properties
since both materials trap a large amount of water in their
molecular structure, which causes the increase of their
effective dimensions. These materials have very different
plasma expansion characteristics since alginates have COP of
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2 - 3 mmHg when used at physiological concentrationsg] in the
range of 0.7 - 0.8% by weightOwhile current formulations of
PEG-Alb at about 4% concentration have COP of about 60
mmHg. At present alginates have not been extensively
studied, while there is substantial information on the
physiological characteristics on plasma expansion by PEG-
Alb, also because it has the same biophysical properties as
PEG-Hemoglobin, a material presently in clinical trials as an
oxygen carrying blood substitute.

PEG-Albumin formulation and properties

PEG-Alb is formulated with either bovine or human
albumin using similar procedures. Polyethylene glycolD PEGO
has been used for modifying of proteins, peptides, enzymes
and liposomes to extend plasma half-life, eliminate/lower
toxicity, immunologic reactions and antigenicity, increase

590

solubility in water and provide increased thermostability>™-

PEG-Alb is produced by conjugating the protein with PEG
using a single step version of the thiolation mediated,
maleimide chemistry based conservative PEGylation
described by Acharya et. al.,”" Albumird 0.25 mMO0is
incubated with 5 mM 2-iminothioland] BioAffinity Systems,
Rockford, ILOwith 7.5 mM maleimide phenyl PEG-5000 in
PBS overnight. The surface amino groups are thiolated and
thiol groups generated on the protein in situ are derivatized
by the maleimide PEG in the reaction mixture. The single
step reaction used limits the oxidation of the thiols of the
thiolated protein, and is a general approach for producing
PEGylated proteins. Excess reagents are removed by
tangential flow filtration after the overnight incubation and a
70 K membrane is used for diafiltartion and removal of
unreacted PEG and excess immunothiolane. The material is
prepared in concentration ranging from 2 to 4 g/dO protein
basedl This chemical modification leads a colloidal osmotic
pressure 40 mmHg, and a viscosity of 2 cp for a 25 g/dl
concentration in saline.

The PEG molecule has the property of trapping a
significant amount of water in its vicinity and a few PEG
polymers attached to the surface of a protein trap a layer of
water on it surface. This process causes the hydrodynamic
dimensions of the protein to increase substantially
augmenting its intrinsic viscosity and the COP of the solution.
Biologically the water layer renders the molecule
undetectable by receptors and the immune system which
endows PEG treated molecules with “"stealth" or
"immunosilent” properties.
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PEG-AIlb is usually formulated with an average of 6-12
copies of PEG 5 kDa resulting in a molecular radius of the
order of 8-9 nm vs. a radius of 25 nm for the natural albumin
molecule. Such a large radius would cause a significant
increase in viscosity, however the viscogenic properties are
comparatively moderate, and changes in viscosity are not
maintained when the material is introduced into the
circulation because the high COP dilutes PEG-Alb to the
extent that plasma concentrations are seldom beyond 1%,
leading to plasma viscosities of 1.3 cp vs. the normal plasma
viscosity of 1.2 cp.

At present there are no known biological or functional
differences between PEG-Alb made with human, bovine or
recombinant albumin, also because the PEG conjugation
isolates the protein from the immune system.

PEG-albumin in extreme hemodilution

Extreme hemodilution is a condition that may be defined as
the dilution of blood with plasma expanders beyond the
transfusion trigger. It is seldom attained in clinical conditions
unless continued blood losses are corrected with plasma
expanders in the attempt to manage blood volume when
blood is not available. Physiologically it is defined by the
blood oxygen carrying capacity beyond which oxygen
consumption becomes dependant on hemoglobin
concentration. This critical condition provides an important
experimental benchmark for studying the efficacy of blood
substitutes, because changes in the circulating blood
properties due to the presence of a test material clearly
defines its effectiveness in either sustaining, improving or
deteriorating systemic and microvascular parameters over a
very narrow range of changes in blood composition. This
acute anemic condition magnifies the effects of test
compound since in this condition the organism is only
marginally capable of compensating for changes in blood
properties.

Cabrales et al., made extreme hemodilution experiments via
a two step procedure with 6% dextran 701 Dex7000to a HctO
18% and then hemodiluting to Hct 11% using 5% human
serum albumird HSAL 4% PEG-Ald] HSAO MPAL Mal-PEG-
hemoglobinll MP4, P, = 54 mmHg, Sangart Inc, San Diego,
CAand 6% Dex 70 Systemic findings were that PEG-Alb
provided a greater blood pressure than both HSA and Dex
70, and increased cardiac index 44% above baselind]l no
hemodilutiond Notably systemic peripheral vascular
resistance for PEG-Alb was 70% of that for the non PEG
materials. Microvascular conditions were significantly
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improved for PEG-Alb since flow was normalized and FCD
was above 60%, but not for Dex 70 and HSA whose flows
were significantly below normal and FCD was below 50%.

These results should be in part due to the normalized
oxygen delivery to the heart, since the microvascular
conditions found in the window chamber tissue should be
common to those of other tissues, as shown by a recent study
of where organ flow distribution was measured*”” in extreme
hemodilution. The results obtained appear to be primarily
due to vasodilatation induced by PEG-Alb, while the opposite
effect was seen for Dex 70 and HSA as shown in Figure 1.
Vasodilatation and the significant decrease in peripheral
vascular resistance may be also the reason why mean arterial
blood pressure did not attain baseline values.
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Fig. 1. Extreme hemodilution to Hct 11% with 4.2% PEG-Alb compared
to 6% Dextran 70 kDdJ] Dex 7000and 5% human serum albumin
HAS. Vessel diameter, functional capillary density and cardiac
index after level 3 exchange are shown relative to baseline. There
was no statically significant difference in plasma and blood
viscosity between groups. Plasma COP was 214 + 0.9 mmHg for
PEG-Alb, 203 + 1.1 mmHg for HAS, and 168 + 0.8 for Dex 70.
P< 0.05 vs. baseliné] *[] P<0.05 vs. Dextran 7@ T [ Data from
Cabrales et al., 2005.

PEG-Alb produces two vasodilatory effects, one radicated
in the arteriolar and venular circulation and a second
manifested by the increase in FCD. The former is clearly a
consequence of a vasoactive phenomenon, since it is related
to the reactivity of smooth muscle, which PEG-Alb causes to
relax. The increase or maintenance of FCD is passive effect
due to the transmission of blood pressure to the capillary
network, which follows from the absence of vasoconstriction
in the arteriolar circulation. A likely mechanism behind the
vasodilatory effect of PEG-Alb should be NO management by
PEG-AIlb.
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Nitric oxide mechanism and PEG-Alb

A mechanism that could in principle account for a
vasodilatory effect is mechano transduction resulting from
the maintenance or restoration of shear stress on the
endothelium. In extreme hemodilution where PEG-Alb
appears to be effective in maintaining flow and microvascular
function shear stress is low due to the significant decrease in
blood viscosity and the prevailing low flow conditions present
with the use of low viscosity plasma expanders. Shear stress
is a mediator of the production of NO by mechano
transduction by the endothelium™**, therefore increasing flow
and viscosity should increase production of NO by the
endothelium, an effect that was demonstrated by Tsai et al,
using the high viscosity plasma expander Dextran 500 kDa.
This effect has increased effectiveness
hemodilution because the significant decrease in hematocrit
lowers the NO scavenging properties due to the decrease of
total hemoglobin in blood, near the source of production in
the endothelial layer™"

in extreme

The mechano transduction hypothesis has been
demonstrated for high viscosity plasma expanders such a
dextran 500 kDa in extreme hemodilution] alginates in
hemorrhagic shock*, and the use viscogenic RBCs that do
not carry oxygeri] hemoglobin converted to CO-hemoglobin(
in hemorrhagic shock, and therefore achieve resuscitation
solely by virtue of their enhancement of blood viscosity "
However, the viscogenic properties of PEG-Alb are not
sufficient to increase plasma viscosity significantly, also
because the high COP dilutes the protein to the point that it
is seldom possible to attain plasma concentrations greater
than 2 g/dl. In summary, the mechano transduction
hypothesis works when viscosity can be increased without

increasing COP, which is not the case for PEG-Alb.

PEG-Alb appears to be unique in causing vasodilatation in
conditions of anemia, low viscosity, and low oxygen tension. It
is significant that the chemical process that leads to
pegylation of albumin requires the thiolation of the surface
amino groups leading to the production of extra thiol groups
on the protein surface. Thiol groups have been implicated
with the transport of NO from high concentration regions of
the circulation, like the aortic wall, to the lower NO
concentration regions of the microcirculation' In this process
PEG-Alb could provide a source of extra thiols if the chemical
process of pegylation does not neutralize all active sites
generated on the albumin by thiolation. These mechanisms
have been proposed to occur in normal blood and to be a part
of the regulatory control of ischemia via dilatation and
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increased perfusion®. According to this mechanism, the same
process may be enhanced by the presence of unreacted thiols
on the surface of PEG-Alb. Therefore the unusual
vasodilatory capacity of PEG-proteins the enhancement of an
NO transporting mechanism may be due to pegylation via
thiolation.

PEG-albumin in hemorrhagic shock

Hemorrhagic shock results from the loss of circulatory
volume and oxygen carrying capacity, causing increased
heart rate, vasoconstriction, redistribution of blood flow away
from nonvital organs and the decrease in capillary perfusions
and FCD. Restoration of lost volume with plasma expanders
is the initial therapy followed by blood transfusion.

Cabrales et al. compared the plasma expander HES 200
O Hydroxyl ethyl starch, Pentaspan, B. Braun, Medical , Irvine
CA, 10% w/v COP 85 mmHg, viscosity 3.4 cpOwith PEG-Alb
025 g/dl, COP 38 mmHg viscosity 3.4 cplin a conventional
shock protocol where 50% of blood volume is removed in 5
min, and 25% of blood volume is returned during
resuscitation™ This study showed that PEG-Alb and HES
provide initial identical systemic and microvascular recovery
for about 15 min after resuscitation, when a trend started
leading to statistically significant higher flow, mean arterial
blood pressure, FCD and tissue pH for PEG-Alb in 30 min
O Figure 20 Mechanistically the difference in recovery was
related to the of lack of sustained recovery of arteriolar flow
and FCD hindering the washout of metabolites from the
tissue, preventing lactic acid from returning to normal levels
causing the incomplete restoration of positive base excess
and limiting the normalization of pH. The improved
resuscitation found with PEG-Alb vs. HES should also be due
to effects in the heart muscle and sustained improved cardiac
function, as evidenced by the extended maintenance of blood
pressure and improvement of arteriolar flow.

The difference in outcome could be due to the significant
longer retention time of PEG-Alb a monodisperse material
with molecular weight 130 kDa, vs. HES broad spectrum of
molecular weights with a significant portion of material < 200
kDa. An alternative and/or complimentary explanation for
these effects is that PEG-Alb caused a thiol mediated
improved distribution of NO, leading to vasodilatation,
improved flow and sustained cardiac function and blood
pressure, as seen in extreme hemodilution, since there was no
difference in blood viscosity, and plasma viscosity was 1.4 cp
which is below the level needed to sustain FCD ranging from
1.8 cp“to 2.2 cp*
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Fig. 2. Hemorrhagic shock resuscitation with 25% PEG-Alb vs. 10% hydroxyl ethyl starch, HES 20@ Pentaspan, B. Braun, Medical , Irvine CAU
Systemic and microvascular parameters were maintained by PEG-Alb through the observation period. HES produced an initial recovery that
was identical to PEG-Alb, but this was not sustained beyond the initial 15 min resuscitation period. Microvascular parameters diverged ahead to
systemic parameters by 5 minutes after resuscitation. P<0.05 between HES and PEG-AllJ T [ Data from Cabrales et al, 2005, reprinted by

permission.

The significance of restoring oxygen carrying capacity in
resuscitation from hemorrhagic shock was illustrated in the
study of Wettstein et al. who used the conventional shock
model resuscitated with PEG-Alb only and PEG-Alb and
RBCs up to a concentration of 8 g/dl hemoglobin in the
resuscitation fluid®" In this study, microvascular blood flow
and FCD was significantly improved by avoiding the
transfusion of additional RBCs while increasing the fraction of
PEG-AIlb solution in the resuscitation fluid. However, the
highest oxygen delivery was obtained using PEG-Alb with 8
g/dl of hemoglobin in RBCs. As expected animals receiving
RBC transfusion had higher oxygen tensions, however
resuscitation without additional RBCs extracted a higher
percentage of the available oxygen. A conclusion from this
study is that microvascular recovery is a strong function of
the biophysical properties of the plasma expander, and
independent from the restoration of oxygen carrying
capacity.
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The relevance of oxygen carrying capacity in shock
resuscitation was also tested by Wettstein et al, in the
standard shock model using PEG-Alb and an identically
configured PEG-Hemoglobirid PEG-HbL] where the latter is a
molecule with a high affinity for oxygen, having a p50 of 54
mmHg*‘ These molecules, which are biophysically identical
were used in the same concentratiori] 4.2 g protein/dIC) which
was diluted to about 1 g/dl upon introduction into the
circulation. This study showed that volume restitution in the
hamster window chamber model of hemorrhagic shock did
not show any microvascular or systemic functional
differences between molecules, with identical recovery of
systemic blood pressure, acid base balance and FCD. As
expected oxygen delivery and consumption by PEG-Alb was
significantly lower than that obtained with PEG-Hb, and
tissue pO, was also significantly lower. Therefore this
comparison further supports the concept that the
characteristics of the plasma expander are critical for the
recovery of hemodynamic parameters, which is not
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necessarily related to the restoration of oxygen carrying
capacity.

PEG-Albumin for the treatment of sepsis

Sepsis is an inflammatory response that produces
proteolytic enzymes and oxygen metabolites that cause tissue
damage. This damage is prevented by antioxidants, capable
of blocking or inactivating the noxious products of
inflammation. Sepsis can also be accompanied by hypotension,
a condition called septic shock where, prior to the systemic
circulatory collapsed there is wide spread microcirculatory
impairment and tissue hypoxia leading to organ failure. The
conventional therapeutic approach based on the VIP principle
O ventilate, infuse, and pump°is deployed in the early stage
of sepsis.

We studied the effects infusing a PEG-AIlb solution
administered as 30 % of blood volume in a hypervolemic
bolus in the hamster chamber window model of LPS induced
endotoxemia® This model showed a significantly decreased
FCOJ less than 10% from baselineOat 6 hrs after LPS
injection, which did not recover during observation period
O 24hrsOwithout treatment. Fluid resuscitation was begun in
early stage of endotoxemia as recommended using PEG-Alb
infused with either 16 ml/kd] PEG-Alb-1600or 24 mi/kd] PEG-
Alb-240concentration intravenously during 1 hour, and
compared this to Dex 7@ 6% wt/vol molecular weight 70 kDa
B. Braun Medical, Irvine, CAOinfused at 24 ml/kg hr.

This study showed that treatment with PEG-Alb restored
impaired microvascular function by increasing FCD and
tissue pO, to near normal levels, while lowering perivascular
NO concentration when compared to treatment using
dextran 70 kDa. Endotoxemia significantly increased
perivascular NO in arterioles and venules, which was also
reduced by the increased perfusion due to PEG-Alb-24
treatment. There was also a significant decrease of
perivascular tissue pO, at all time points of observation,
which was in part corrected by the increased perfusion due
to PEG-Alb-24, but not by dextran treatment. In a separate
study recombinant human serum albumirid Nipro Medical
Corp., Osaka, JapanOwas used in the same protocol, which
provided a similar recovery of FCD at 6 hrs after LPS as,
PEG-Alb, however the latter had significantly better outcome
after 12 hrgJ Figure 30*.
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Microcirculatory impairment in sepsis is correlated with
increased tissue NO concentration induced by iINOS*™7 NO
is known to have a dual personality”’whereby NO induced
by eNOS at physiological levels has beneficial circulatory
effects, while NO induced by iNOS causes circulatory
impairment, its level being 100-1000 times higher which is
pathological. In the hamster model perivascular NO
concentration was increased to mM levell nM being normal
and PEG-Alb resuscitation decreased NO to normal levels, an
effect probably resulting from the combined action of PEG-
Alb maintain microcirculatory flow and FCD, increasing the
availability of RBC hemoglobin for scavenging NO. Likewise
the mechanism of NO thiol transport may also have been
operational, in a reverse mode, whereby NO is uploaded in
the microcirculation and distributed to organs with lower
iNOS activity.

CONCLUSIONS

Fluid therapy in critical care is still a matter of
controversy. Colloidal solutions have advantages over
crystalloids because they are effective in lower volumes.
However, colloids are expensive, present the risk of allergic
reaction and coagulopathic effects. Notably PEG conjugation
of colloids should reduce this potential toxicity while also
reducing the total amount of protein administered.
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PEG conjugated colloids particularly albumin and
hemoglobin have excellent plasma expansion properties,
thorough effects that are not explained by their biophysical
properties, also because these materials have high COPs
causing their concentration in the circulation in most
resuscitation scenario to be too small to affect blood viscosity,
shear stress and mechano transduction. Analysis of the
available data shows that both PEG-Alb and PEG-Hb cause
vasodilatation in extreme hemodilution, which in the absence
of mechano transduction would appear to be mediated via
NO transport.

An important feature of PEG-colloids is that they have
large hydrodynamic radii increasing their intravascular
retention time, since they cannot be filtered into the tissues.
Even though it would be in principle possible to simply
provide albumin with extra thiols to obtain the NO mediated
vasodilatation, this materials would extravasate according to
the exchange transport dynamics of natural albumin which
has a significantly lower intravascular residence time. In
principle any molecular species of sufficient size including
dextrans and starches could serve as a frame to support PEG
molecules, however albumiri] and hemoglobinChave the
desirable feature of being uniform in dimensions with a
predictable number of surface molecular structure for
attaching PEG via thiolation.

It is not clear at this time what will be the economic
scenario for PEG-Alb, however it is likely that it will be at
least as costly as the basic colloid. This problem however
should be compensated by its unique volume expansion and
microvascular function restoration and enhancement
properties, coupled with its effectiveness at weight
concentrations that are significantly smaller than the
unmodified colloid. An additional economy inherent to the use
of this new type of plasma expander is that its ability of
maintaining microvascular function allows extending the RBC
transfusion trigger.

It is likely that PEG-HSA will be effective in extending the
transfusion trigger; however an oxygen carrier is ultimately
required when blood losses are extensive. Therefore it may
be effective to consider the use of a plasma expender like
PEG-AIlb in combination with a material such as HbV
O hemoglobin vesiclesOwhich carries oxygen but like RBCs
has no COP per se, and requires an appropriate fluid vehicle.
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Review

Hemoglobin Vesicle Aids Recovery of Cardiac Function during
Ischemia-Reperfusion in Langendorff Perfused Rat Hearts

Tadashi Yamagishi, Motoaki Bessho, Miyuki Hama, Ryuichi Katoh,
Shigeki Yanagida, Masatoshi Kusuhara, Fumitaka Ohsuzu

Abstract

Background. - Formed from a lipid bilayer membrane, hemoglobin vesiclé] HbVOis a small spherd] diameter ca. 250 nmOwhich
contains hemoglobin, and is a candidate blood substitute. In this study, we examined whether HbV influences cardiac function
during ischemia-reperfusion.

Methods. - Rat hearts were perfused according to the Langendorff method and subjected to 30 min of global ischemia and 30
min of reperfusion. HbVV was made into a dispersion and diluted with Krebs-Henseleit buffer to achieve hemoglobin
concentrations of 0.33 g/dL and 0.10 g/dL, and the hearts were perfused with this dispersion for 10 min immediately prior to
ischemia. The same experiment was performed using the empty vesicld] EV; no hemoglobinl] Cardiac functions were
continuously monitored and coronary effluent collected every 5 min throughout the experiment.

Results. - In the HbV groups, between 10 and 30 min of reperfusion, there was a significant recovery in heart rate to virtually
pre-ischemia levels[] as compared to the control group] p<0.050 A rise in endodiastolic pressure during reperfusion was
significantly suppressed in the HbV grougl 30-60 mmHgas compared to the control groug] 70-100 mmHg p<0.050] In the HbV
groups, there was a significant recovery in left ventricular developed pressurel] LVDPO between 20 and 30 min of reperfusion,
as compared to the control group] p<0.050 After 5 min of HbV perfusion and at 1 min of reperfusion, the lactate concentration
in the coronary effluent was significantly lower in the HbV 0.33 g/dl group than in the control groupl] p<0.050]

Conclusion. - These results suggest that HbV changed cardiac metabolism before and during ischemia, and as a result,

enhanced recovery of cardiac function during reperfusion.

Keywords hemoglobin-vesicle, cardiac functions, lactate, ischemia-reperfusion

Introduction

Artificial red blood cells have the following features that
reduce problems in clinical blood transfusionsd 10no need for
time consuming cross-matching or typingd 200no need for
refrigeration, and] 300no potential as infectious agents.
Therefore, artificial red blood cell substances have been
widely investigated as potentially useful blood substitutes
since the 1960s". They include perfluorochemicals, various
types of chemically modified hemoglobin, and recombinant
human hemoglobin®*”, and are more simple oxygen-carriers
than artificial red blood cells. In 1993, Takeoka et al.*”
developed a method for the production of hemoglobin vesicles
covered with a lipid bilayer membrane that could serve as
artificial red blood cells. Since then, many studies on the
functions®”of hemoglobin vesicles as a blood substitute and

their biological safety™have been conducted using various
animal models. The data obtained in these studies suggested
that hemoglobin vesicles had no serious adverse effects on
cardiac functions in the models in which they were used but
their actual effects on cardiac functions were not clarified.
Therefore, in the present study, we examined whether HbV
influences cardiac functions during ischemia-reperfusion
using isolated rat hearts and the Langendorff perfusion
technique. We found that HbV aids recovery of cardiac
functions during ischemia-reperfusion in this model.

Materials and Methods
Hemoglobin-vesicle and empty-vesicle

Hemoglobin-vesicldl HbV[] a small sphere’f diameter ca.
250 nmOformed from a lipid bilayer membrane which

Internal Medicine I, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
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contains hemoglobin, is supplied by Oxygenix Co, Ltd. as a
saline-suspension containing 10 g/dL of hemoglobin. Also
supplied as a suspension, empty-vesiclé] EV0is identical to
HbV except that it does not contain hemoglobin. The HbV
suspension was diluted with modified Krebs-Henseleit buffer
to final hemoglobin concentrations of 0.33 g/dL] 30 times
dilutionOand 0.10 g/dLd 100 times dilutiond The EV
suspension was diluted in the same manner as HbV with
modified Krebs-Henseleit buffer.

Animals and experimental groups

Eight-week-old male Wistar rats were purchased from
Charles River Japan Inc. The rats were maintained under
specific pathogen-free conditions and a constant dark/light
cycldl 12 h eachdin our animal facility at the National
Defense Medical College throughout the experiment. They
were given free access to a laboratory chow CE-7J Clea
Japan, TokyoOand water for a few weeks after purchase. A
total of 33 rats were included in the present study and the
experiments were performed when they were 9 to 12 weeks
old. They were divided into five experimental groups: control
groupgl] n = 60) hemoglobin-vesicle 0.33 g/dL group] HbV 0.33
g/dL group, n = 6[] hemoglobin-vesicle 0.10 g/dL groupg] HbV
0.10 g/dL group, n = 70] empty-vesicle 0.33 g/dL group] EV
0.33 g/dL group, n = 70] and empty-vesicle 0.10 g/dL group
OEV 0.10 g/dL group, n = 70 All experiments were
performed in accordance with the National Defense Medical

College Institutional Animal Care and Use Committee Guidelines.

Heart preparation and perfusion method

The rats were pre-medicated with hepariri] 1,000V, i.p.0
and 10 min later anesthetized with ketamine hydrochloride
090 mg/kg, i.p.0and xylazine hydrochloridé] 10 mg/kg, i.p.0]
The hearts were excised, put into ice-cold modified Krebs-
Henseleit buffefl mKH buffer(] quickly trimmed, weighed,
and perfused according to the Langendorff modél Fig. 1.00
Perfusion was conducted at a constant perfusion pressure of
100 cmH,0 at 37°C with modified Krebs-Henseleitl mKHO
buffer solution, which comprised NaCl 116 mM, KCI 4.7 mM,
MgSO, 1.2 mM, CaCl, 25 mM, NaHCO, 25 mM, KH,PO, 1.2
mM, and glucose 11 mM. The experimental buffer solutions
used] mKH buffer solution, two HbV containing mKH buffer
solutions, two EV containing mKH buffer solutionsCwere
continuously aerated with 95% O, + 5% CO, and the pH was
adjusted to 7.4. Cardiac function was monitored and recorded
using a fluid-filled left ventricular balloon in line with a
transducer] P-50, Gould Inc.0and a WS-641G multi-channel
recorderf] Nihon Kohden, Tokyo, JapanC] The balloon volume
was set to produce a left ventricular end-diastolic pressure
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O LVEDPOof 0-5 mmHg.

In the control group, each heart was perfused with mKH
buffer for 20 miri] control perfusionOand then subjected to 30
min of global ischemia by stopping the perfusion. This was
followed by 30 min of reperfusion. In the other experimental
groups, each heart was subjected to perfusion with mKH
buffer for first 10 min of the control perfusion and then
perfusion with the respective vesicle containing buffer
solution for the remaining 10 min. They were then subjected
to 30 min of global ischemia and 30 min of reperfusion in the
same manner as for the control group. To measure the
coronary flow ratéd] CFROand lactate content, the coronary
effluent was collected at 5-min intervals during the control
perfusion. During reperfusion, it was collected at 1 min and 4
min, and then at 5-min intervals until the end of experiment.
After measuring the volume of the effluent, part of it was
centrifuged at 10,000 x g for 40 min, and the supernatant was
frozen and stored at -80°C until analysis for lactate content.

aeration (95%0,+ 5%CO,)

EV or HbV

—> § in
4 I mKH buffer

mKH
buffer

100 cmH,0

isolated
heart
..... \ A transducer and
recorder
balloon

Fig. 1. Schematic presentation of Langendorff perfusion

Biochemical analysis and analysis of results

The coronary effluent was analyzed for lactate content
enzymatically by the method of Lowry and Passonneau®
Cardiac function datd] heart ratd] HR[) left ventricular
endodiastolic pressurdl LVEDPQO and left ventricular
developed pressurdl LVDP[TIwere taken from the records
made at 5-min intervals during the control perfusion and then
at 10-min intervals until the end of experiment. In calculating
the CFR for the 1% 5-min of reperfusion, the volume of the
coronary effluents at 1-min and 4-min were added together
and their sum taken as the volume for the 5-min interval. All
values were calculated as mean + SD but the SD has been
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omitted to avoid confusion. All parameters were analyzed by
means of time-series analysis of variance, and then the
differences between the mean value in the control group and
the corresponding values in the other experimental groups at
each measuring time were analyzed using the Dunnett
multiple comparison-test. A p<0.05 was considered as
significant.

Results
Cardiac functions
Coronary flow rate (CFR)

The mean CFR in the control group gradually decreased
from about 17 mL/min to 15 mL/min during the control
perfusion. Just after the onset of reperfusion, CFR started to
increase. Between 5 and 10 min, it recovered to a level near
that in the control perfusion period, and then showed a slight
decrease until the end of reperfusion. With the change to
mKH buffer containing HbV or EV for the last 10 min of the
control perfusion in the respective groups, though there was
a larger decrease in the mean CFR in the HbV 0.33 g/dL
group and EV 0.33 g/dL group than in the control group, this
difference was not significant. Changes in CFR in the
reperfusion period were similar in the control and
experimental groups$] Fig. 2.0]

20

18 | reperfusion

O ischemia
.. < e

30 min

30 min
16

14 |

12

10 |

EV or \
HbV \

Coronary flow rate (mL/min)

| control perfusion
< >

2l 20min

0 5 10 15 20 30 40 50 55 60 70 80

Time after the onset of control perfusion (min)

Fig. 2. Change in coronary flow ratel] CFRO during experimental period
o : control group, O: HbV 0.10 g/dL group, = : HbV 0.33 g/dL
group, O: EV 0.10 g/dL group, a: EV 0.33 g/dL group
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Heart rate (HR)

Mean HR values in the control group were maintained at
about 260 beats/min during the control perfusion. HR was
not affected by perfusing with mKH buffer solution
containing HbV or EV for the last 10 min of the control
perfusion. During the reperfusion period, there was no
beating in any hearts of the control group apart from slight
beating in one heart at 10 min. While the mean HR in the EV
0.10 g/dL group was similar to that in the control group,
there was a slight recovery in HR in the EV 0.33 g/dL group,
though this difference was not significant as compared to the
mean HR in the control group. However, there was a
significant recovery in HR in the two HbV groupsl HbV 0.10
and 0.33 g/dL0 p<0.050compared with the control group at
all measurement times during reperfusion. The mean HR in
the HbV 0.33 g/dL group had recovered to the control
perfusion level after 30 min of reperfusiorid Fig. 3.0

300
ischemia reperfusion
B 30 min 30min u
250 | : Ak
r-—l
R
£ 200 | =
2 i
3 [
£ 150 | )
° .
© !
h = II,'
S 100 | e
% ~A—-A
Acontrol perfusion R
50} 20min
0

0 5 10 15 20 30 40 5 60 70 80

Time after the onset of control perfusion (min)

Fig. 3. Change in heart rate(] HRO during experimental period
o : control group, O : HbV 0.10 g/dL group, m : HbV 033 g/dL
group, O: EV 0.10 g/dL group, A: EV 0.33 g/dL group
*p<0.05, vs. control group by Dunnett multiple comparison test

Left ventricular endodiastolic pressure (LVEDP)

During the control perfusion, the mean LVEDP in the
control group was maintained at about 5 mmHg. This value
was not altered by perfusing with the mKH buffer solutions
containing HbV or EV for the last 10 min of the control
perfusion period. After the onset of ischemia, the mean
LVEDP in the control group started to rise gradually, and at
30 min of ischemia it had reached about 40 mmHg. The
changes in mean LVEDP in the two EV groups were similar
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to that in the control group during ischemia. The mean
LVEDPs in the 2 HbV groups seemed to have risen to a
lesser extent than that in the control group at 30 min of
ischemia, though this difference was not significant when
compared with the control group. During reperfusion, the
mean LVEDPs rose further to 80-90 mmHg in the control and
EV 0.10 g/dL groups, and this rise was maintained until the
end of reperfusion. In the EV 0.33 g/dL group, the LVEDP
had risen to about 80 mmHg at 10 min of reperfusion and
then decreased to about 65 mmHg at the end of reperfusion,
though the latter LVEDP was not significant when compared
with the corresponding value in the control group. In the 2
HbV groups, rises in the mean LVEDH] 30-60 mmHgOwere
significantly p<0.050suppressed as compared with the
control group] 70-100 mmHgat 20 and 30 min of reperfusion
0 Fig. 4.0

100
80 |
=)
T 60 | h
1S control perfusion ischemia .
E “—om >< > /] Lk
min ) N .
o ,’/ m O
¥ =
W40t _ e N
- *
20 | reperfusion
30 min
0

0O 5 10 15 20 30 40 50 60 70 80

Time after the onset of control perfusion (min)

Fig. 4. Change in left ventricular endodiastolic pressuré] LVEDPOduring
experimental period
o : control group, O : HbV 0.10 g/dL group, m : HbV 033 g/dL
group, O EV 0.10 g/dL group, a: EV 0.33 g/dL group
*p<0.05, vs. control group by Dunnett multiple comparison test

Left ventricular developed pressure (LVDP)

During the control perfusion, the mean LVDP in the
control group gradually decreased from about 175 mmHg to
155 mmHg, and a similar decrease was observed in the other
experimental groups. During reperfusion, apart from the
development of a small amount of pressure in 1 heart at 10
min, no recovery in LVDP was observed in any heart in the
control group, and the mean LVDPs in the EV 0.10 g/dL
group were nearly the same as those in the control group at
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all measurement times. While there appeared to be a
recovery in LVDP in the EV 033 g/dL group, this was not
significant when compared with the control group. In
contrast, at 20 and 30 min of reperfusion, there was a
significant] p<0.050recovery in the mean LVDP in both HbV
groups as compared with the control groupd Fig. 5.0

200
ﬁ- x-g . ischemia reperfusion
) 30 min 30 min
150
>
T
1S
E 100 |
o *
S u -
: A
l_.'*
50 | ,;
P control perfusion R ,':
20 min
0
0 5 10 15 20 30 40 50 60 70 80

Time after the onset of control perfusion (min)

Fig. 5. Change in left ventricular developed pressurd] LVDPOduring
experimental period
o : control group, O: HbV 0.10 g/dL group, m : HbV 0.33 g/dL
group, O: EV 0.10 g/dL group, A: EV 0.33 g/dL group
*p<0.05, vs. control group by Dunnett multiple comparison test

Lactate concentration of coronary effluent

During the control perfusion, there was a gradual increase
in the mean lactate concentration of the coronary effluent in
the control group, from about 10 y g/mL to 18 p g/mL.
Though the increase in mean lactate concentration seemed to
be slightly suppressed for perfusion with mKH buffer
containing EV 0.10 g/dL or 0.33 g/dL, the difference from the
control group was not significant. In the HbV 0.10 g/dL and
0.33 g/dL groups, the mean lactate concentrations for 5 min
after the onset of HbV perfusion were significantly] p<0.050
lower than the corresponding control valudl Fig. 6.Al

During reperfusion, there was a sharp increase in the
lactate concentration of the coronary effluent in the control
group in the first minute. In the next 4 min of reperfusion, it
decreased rapidly to around the level in the control perfusion,
and then continued at about this level until the end of
reperfusion. Changes in the mean lactate concentration in the
HbV 0.10 g/dL group were similar to those in the control
group throughout the reperfusion period. The mean lactate
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concentration in the HbV 0.33 g/dL group at 1 min of
reperfusion was significantly] p<0.050lower than that in the
control groupd Fig. 6.BO. Though the mean lactate
concentration in the HbV 0.33 g/dL group seemed to be
slightly higher than that in the control group at 30 min of
reperfusion, the difference was not significant.

20
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16 |
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Lactate concentration (ug/mL)
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B ischemia reperfusion
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100 }
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Time after the onset of control perfusion (min)

Fig. 6. Change in lactate concentration of coronary effluent during
experimental period
A: Data obtained during control perfusion, B: Data obtained
throughout the experiment. o : control group, O: HbV 0.10 g/dL
group, m : HbV 0.33 g/dL group, O: EV 0.10 g/dL group, A: EV 0.33
g/dL group
*p<0.05, vs. control group by Dunnett multiple comparison test
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Discussion

When an organ or a tissue is perfused with a buffer
containing microcapsules like HbV and EV, we must be
aware of the possibility of such microcapsules causing
embolisms in the organ or tissue. Nakai et al.*"reported that
when isolated rat hearts were perfused with Krebs-Henseleit
O KHObuffer containing hemoglobin-encapsulated liposomes
O neo red cells, NRCO there was a sudden increase in
perfusion pressure just after perfusion began, and their
histological findings showed that embolisms were the likely
cause of the increase in perfusion pressure. Further
investigation revealed that inorganic crystals were formed
after mixing NRC with the buffer, and these researchers
suggested that the crystals were the cause of the embolisms.
In this connection, Sakai et al.*"showed that HbV caused no
constriction of resistance arteries or hypertension in a
conscious hamster model.

In the present study, we carefully observed cardiac
functions while the hearts were perfused with mKH buffer
containing HbV or EV for 10 min prior to ischemia. As
mentioned in the results section, cardiac functionsl CFR, HR,
LVEDP, and LVDPOwere not significantly affected by
perfusing with mKH buffer containing HbV 0.33 g/dL or EV
0.33 g/dL. These results suggest that in contrast to the above
research using NRC, embolisms did not occur in our study.
Our findings with the higher concentrations of HbV and EV,
however, require further clarification.

It is interesting that the lactate concentration of the
coronary effluent was lower in the HbV 0.33 g/mL group
than in the control group during the first 5 min of HbV
perfusion and first minute of reperfusion. Pyruvate, the final
substrate in the glycolytic pathway, is mainly oxidized in the
mitochondria and partially converted to lactate by lactic
dehydrogenase during control perfusion. Then, in ischemia,
almost all pyruvate is converted to lactate since
mitochondrial oxidation immediately stops, and this lactate is
thought to be a factor in cardiac cell injury and delay in the
recovery of cardiac functions during reperfusion. Therefore,
we surmise that HbV suppressed lactate production in the
cardiac cells during HbV perfusion and ischemia by
stimulating mitochondrial oxidation, resulting in the
significant recovery in cardiac functions in the HbV 0.33 g/dL
group during reperfusion, though the mechanism by which
HbV suppresses lactate production remains to be clarified.

In conclusion, our results suggest that HbV altered cardiac
metabolism both before and during ischemia, and as a result,
enhanced recovery of cardiac function during reperfusion.
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